
CPS221 Lecture: The Application Layer and the Client-Server Model

last revised 10/5/14

Objectives

1. To introduce the client-server model and its major variants (thin, thick client;
three layer)

2. To discuss some key application layer protocols: DHCP, DNS, HTTP
3. To introduce the idea of remote objects / java RMI
4. To discuss the basic idea of Web 2.0

 Materials:

1. Projectable of three variants of client-server model
2. Executable of date.cgi modified to run on laptop
3. Projectable of source code for date.cgi
4. Projectables: formGET.html, formPOST.html, hiGET.html, hiPOST.html
5. Above installed in www.cs.gordon.edu/~bjork
6. Projectables of original and distributed version of registration system
7. Projectables of apparent and actual implementations of a remote object
8. Ability to demo RMI version of registration system - server on workstation,

client on laptop
9. Projectable of XML description of book
10.Projectable of place of Content Management System (Casad Figure 19.1)

I. Place of the Application Layer in TCP/IP

A. As you recall, the ISO/OSI networking model had a total of seven
layers - four corresponding to layers we have already discussed and
three corresponding to layers above the Transport Layer. What were
they? What was the basic function of each?

ASK

1

1. The Session Layer deals with matters like authentication, which are
needed by many kinds of applications (e.g. email, ftp, some web sites)
In the ISO/OSI model, this is factored into a separate layer because

a) Not all applications or uses of an application like a web browser
need the notion of a session.

b) But, facilities like authentication are useful for many different
kinds of application

2. The Presentation Layer deals with matters like encryption and
various character formats (e.g. ASCII vs EBCDIC). In the ISO/
OSI model, this is factored into a separate layer because

a) Not all applications or uses of an application like a web
browser need encryption

b) But, facilities like encryption and character code management
are useful for many different kinds of application

3. The Application Layer deals with the particulars of an application
(mail, file transfer, web browsing, etc.)

B. In TCP/IP, all of these functions are subsumed in the Application layer. As
a result, applications that need services provided by the other two ISO/OSI
layers need to incorporate them in the application layer

This may be handled as it is in http, where

1. Encryption is provided for by a variant of the basic http protocol
known as https.

2. Session management is handled by add-on products, of which there
are many in the web world (e.g. Cold Fusion used at Gordon)

2

II. Models for Applications

A. Many applications are structured on the basis of the client-server
model of computation.

1. In the simplest case, a client-server system consists of a server
system and (one or more) client subsystems. For example, a web
browser relates as a client to a web server; the mail program
running on a personal computer acts as client to a mail server, etc.

2. More complex systems can be understood in terms of a layered
model: a user-interface layer, a business-logic layer, and a database
layer. (These are layers within the application layer - to be
distinguished from the lower networking layers)

For example, many e-commerce systems are set up this way: the
user interface layer is a web page (perhaps with embedded
javascript) viewed by a web browser; the business-logic layer is
the software that provides information in response to user requests
and processes orders, and the database layer stores information
about the products and records user orders. There are three
different ways these might be distributed:

PROJECT

a) An approach often used by e-commerce systems (the so-called
“thin client” approach)

3

Client System(s)

Server System

User-interface layer

Business-logic layer

Database layer

b) The so-called “thick client” approach, used when it is desirable
to install the business logic software on the client system (This
wouldn’t work for e-commerce, of course, but is sometimes
used for specialized applications)

Client System(s)

Server System

User-interface layer

Business-logic layer

Database layer

c) A three-layer approach that can also be used as an alternative to
the thin client approach. (Note that the client would never see
any difference between this approach and the thin-client
approach; in fact, many e-commerce systems are in fact built
this way)

4

Client System(s)

“Visible”
Server System

User-interface layer

Business-logic layer

Database layer

Database
Server System
(Invisible to
clients)

3. While the client-server architecture is most commonly seen in
distributed systems, it can also be used for software systems
running on a single computer - e.g. a program that uses a relational
database is often structured as a client relating to a separate
database server program running on the same computer. (In fact, a
database server program running on a computer may
simultaneously be serving several different clients on that same
machine.)

B. An alternative architecture for distributed systems is a Peer-to-Peer
architecture in which there is no designated server as such. Instead,
each participating system can function either as a client, or as a server
to some other system.

(We will not develop this here)

5

III.Models for Servers

A. There are several different models that can be used for server systems.

B. The simplest model is to have a single server, running a single thread.
Incoming requests are queued up for this thread, which processes
them one at a time in the order received.

1. This is the simplest model, and is viable for situations in which
requests are independent of one another.

 This is the case, for example, with simple http. (Each page
request is handled by a separate TCP connection that is set up
when the page is requested and is torn down after the page is sent.)

2. It quickly becomes complex in situations where multiple requests
from a given source are related to each other.

For example, this is the case when the notion of a "session" is
present - e.g. when one logs in to an account and subsequent
requests are related to that login.

C. An alternative is to use a multithreaded server, so that each user is
served by a separate thread that is created when the session is
established.

1. The thread is responsible for maintaining state information about
that session, which can greatly reduce complexity.

2. Use of a multithreaded server can also improve performance even
when requests are independent of one another.

To see why, suppose that request requires that the thread perform
an operation like a disk read that must block until the operation
completes.

6

a) With a single-threaded server, all other requests have to wait
until the server thread finishes with the current request.

b) With a multi-threaded server, the threads serving other requests
can continue in parallel with the wait.

c) Note that, since there is a limited number of CPU cores, the
multi-threaded server cannot do computation on behalf of more
threads at a time than there are cores - just that it doesn't have to
be blocked when one thread is blocked. (But on a multicore
CPU even this will be an advantage).

Illustration: the main street my street comes out onto (Elliott
Street) has only one lane of traffic in each direction, so only one
car at a time can pass through the intersection in a given
direction.

However, the westbound direction has a left-turn lane, so if a
car is blocked waiting to turn left other cars can still go in that
direction. However, there is no left-turn lane in the eastbound
direction, so if an eastbound car wants to turn left all remaining
eastbound traffic is blocked until the turn is completed.

D. When the rate of requests for service exceeds the rate at which the
server can process requests, it is possible to use multiple, basically
identical servers. In this case, the IP of the service actually refers to a
proxy server, that simply parcels the requests out to different the
actual servers in a way that balances the load.

7

IV.Important Application Layer Protocols

A. There are a large number of important application layer protocols in
the Internet world.

B. We will focus on just one, which is perhaps the most familiar of all:
http and its relative: https.

1. There are actually three approaches:

a) Static html - html text resides as file on server, fetched on
demand by an http request.

b) Dynamic html - html text is constructed by server on demand
based on script/template stored on server, typically with some
parameters specified by the http request.

Example: Demo a request for weather information on yahoo -
note how location is specified in URL. Now change locations -
note similar appearance of page.

c) Active html - html text contains code to be executed on the
client (e.g. JavaScript)

d) The latter two may be combined to yield Dynamic+Active html

2. We will only discuss dynamic html here

a) Static html is straight-forward - many of you are already
familiar with it.

b) Active html is discussed in the Internet Programming course -
as well as a lot more about dynamic html

3. There are actually two approaches to dynamic html

8

a) An html page can contain embedded code that is executed by
the server, so that what the client receives is a mixture of html
stored in the file plus html created by the server.

(1) This is called server side scripting

(2) It requires special support in the server. There are a
number of variants, some supported by commercial servers
and some by open source servers (e.g. ASP or JSP or Cold
Fusion ...)

b) Html can be produced by a separate program (or shell script)
that is run by the server - typically as a result of a special URL.
- A simple example: date.cgi created by Jon Senning

(1) Execute on Linux

(2) Demo via web: www.cs.gordon.edu/~senning/date.cgi

(3) PROJECT code - Some things to note

(a) Must specify full path for any programs run (web server
has no default path)

(b) Must output a header, blank line, then actual html (web
server expects this)

(c) Must be executable by username server runs under

c) This example didn't need any parameters - but many usages do.

d) Example: PROJECT one variant of hi.cgi

 There are two basic approaches - Both of which typically
depend on form code on a web page accessed by client

(1) GET method - parameters are appended to URL in GET
request.

(a) This can be done automatically by code associated with a
form button,

9

http://www.cs.gordon.edu/~senning/date.cgi
http://www.cs.gordon.edu/~senning/date.cgi

(b)Parameters can be in a URL on the page.

(c) CGI program accesses in one of two ways depending on
how passed - we won't get into details.

(d)Example: www.cs.gordon.edu/~bjork/formGET.html;
enter name - note parameter in URL.

(e) PROJECT formGET.html

(2)POST method - CGI program reads parameters from
standard input, as lines that will be of the form name=value

(a) PROJECT formPOST.html

(b)PROJECT hi.POSTcgi

(c) Execute hiPOST.cgi - type line saying name=russ

(d) Demo on server
www.cs.gordon.edu/~bjork/formPOST.html

C. There are a number of other application layer protocols that are
frequently encountered:

1. Telnet / ssh

2. ftp / sftp

3. Various protocols used with email: smtp, pop (currently 3), imap,
mime

10

http://www.cs.gordon.edu/~bjork/formGET.html
http://www.cs.gordon.edu/~bjork/formGET.html

V. Web 2.0

A. The term Web 2.0 has appeared as a sort of buzzword, not to describe
any change to the basic web protocols, but rather to describe a change
in the way the web is used.

1. The original web model saw users as consumers of information
provided by servers.

2. The Web 2.0 model sees users as also being producers of
information that can be shared with others via the web -
"prosumers".

3. Examples of Web 2.0-style applications?

ASK

B. On the server side, Web 2.0 applications may make use of some sort
of Content-Management System (CMS) on top of a database to allow
the user to update content to be seen by other users.

PROJECT

C. Though Web 2.0 does not call for any change to basic Web protocols,
it does rely heavily on client-side technologies that build on these
protocols. Sometimes the term "AJAX" is used - which stands for
"Asynchronous Java Script and XML"

1. Web 2.0 applications typically make use of client-side scripting -
what we earlier called Active html.

2. Web 2.0 applications typically are asynchronous - they perform
updates "on the fly" rather than using the strict request page - wait
for page - display page model originally used by the web.

11

3. Web 2.0 applications may make use of notations like XML or the
more recent JSON (Java-Script object notation).

a) Standard html focuses on how information is displayed. Tags
like the following are common in html:

<p>

<hr>
<h 1-6>
<table>

b) Notations like XML and JSON focus on what information means,
with cascading style sheets used to specify how it is displayed. For
example, the following is an XML description of the book we are
using

PROJECT

<book>
 <title>Sam's Teach Yourself TCP/IP</title>
 <authorJoe Casad</author>
 <isbn>978-0-672-33571-6</isbn>
 ...
</book>

D. A related idea is the notion of a web service.

1. Here, the idea is to use web protocols for more general machine-
to-machine communication beyond simple web-browsing

2. A web service is an information source that provides information
(typically encoded in a form like XML or JSON) on request from a
client other than a standard web browser.

Example: Calebe Maciel's senior project

12

VI.Remote Objects/RMI

A. Finally, we want to look at an approach that can be used in the application
layer that does not necessarily make use of the Internet (though most
implementations are built on top of TCP/IP): Remote Objects.

B. The basic idea is to create a situation in which a program running on
one machine can access objects actually running on another machine.
There are several approaches to doing this:

1. Using an object request broker (ORB).

a) An object request broker is a piece of software that needs to be
running on both machines. It allows a client program running on
one machine to invoke methods of an object in a program running
on a server machine. In effect, once access to a remote object has
been established, a client program can interact with the remote
object the same way it interacts with a local object - the location is
not a factor in how it uses an object. (The remote object looks just
like a local object to the program using it.)

(1)There is an industry standard for ORBs called CORBA
(Common Object Request Broker Architecture.)

(2)Thus, when we talk about using an ORB, we usually mean
using an ORB that complies with the CORBA standards.

b) The major advantage of CORBA is that it is a cross-language,
cross-platform industry standard.

(1)Because CORBA is an industry standard, CORBA-
compliant ORBs from different software vendors can inter
operate with each other just as well as ORBs from the same
vendor. Thus, a client and a server do not have to be
running the same ORB software.

13

(2)CORBA is cross platform - Any CORBA-compliant ORB on
one machine can communicate with any CORBA-compliant
ORB on another machine, regardless of the machine or
operating system.

(3)CORBA is cross language - A CORBA-compliant ORB
allows a program written in (say) Java to access objects in a
program written in (say) Smalltalk on another machine.

(a) This is accomplished by specifying the interface to an
object using a language-neutral Interface Definition
Language (IDL).

(b)A CORBA-compliant ORB includes IDL compilers
which translate an IDL specification into appropriate
language-specific interfaces and implementation
skeletons.

(c) Note that the Java library includes a package org.omg
that provides the Java side of the link to a CORBA-
compliant ORB on the same computer, which can then be
used to link to ORB’s on other computers. (The org.omg
package is not an ORB, it provides facilities for using an
ORB.)

c) A major disadvantage of CORBA is that it is complex and
CORBA-compliant ORBs are fairly expensive.

d) We will not discuss CORBA further.

2. Using Java RMI (Remote method invocation).

a) RMI provides capabilities similar to those provided by an ORB,
but only to Java programs.

14

b) A major advantage of RMI for us is that it is integrated into the
Java language and libraries

c) A major disadvantage of RMI is that it is integrated into the
Java language and libraries!

d) We will use RMI in a lab (which will be something of a
“cookbook:” lab., because it is readily available to us. If you
understand RMI, you will find it easier to understand
approaches like CORBA or .NET, because there are significant
similarities (though obviously there are important differences as
well).

3. Numerous other alternatives we won’t discuss:

a) Microsoft proprietary technologies: DCOM and .NET remoting

b) Remote Procedure call (Sun RPC). [Actually, RMI can be
thought of as the Java version of RPC]

C. An example (using RMI): Suppose we wanted to use rmi to convert
the registration system you used in a couple of CPS122 labs into a
client/server version.

1. The following deployment diagrams show the structure of the
original version

	
	
	

 Registration System

 Deploys

controller.Controller

gui.RegistrationGUI
gui.RegController

model.RegistrationModel
model.Course
model.Student
model.EnrolledIn

15

PROJECT

2. Our goal is to create a distributed version that looks like this:

PROJECT

a) What is the only class that appears on both the client and the
server nodes?

ASK

b) Actually, gui.RegController is an interface that describes a
remote object - an object that “lives” on the server, but can be
accessed by objects that “live” on the client (in this case, the
GUI)

c) What we will create is something that looks like this:

PROJECT

16

Local client
object(s)

Local server
object(s)

CLIENT SYSTEM SERVER SYSTEM

Remote
object

result :=
 operation()

LAN Registration Client

 Deploys

gui.RegistrationGUI

 Registration Server

 Deploys

controller.Controller

gui.RegController

model.RegistrationModel
model.Course
model.Student

d) This will actually be implemented like this:

Local client
object(s)

Local server
object(s)

Remote
object

result :=
 operation()

Stub object Skeleton
 object

PROJECT

e) This is an instance of the proxy pattern. There exist two proxy
objects - one each on the client and the server.

(1)The client proxy is called a stub in RMI.

(2)The server proxy is called a skeleton in RMI.

(3)When the GUI on the client needs to access the remote
object (the controller), it executes a method of the stub. The
stub, in turn sends a message over the network to its partner
on the server (the skeleton). The skeleton forwards the
request to the real controller, receives a result, and passes it
back over the network to the stub. The stub, in turn, returns
the result to the GUI on the client.

3. DEMO: The RMI version of the registration system

17

a) The Server will run on a workstation

(1) login to micah

(2) cd cps221/RMIExampleServer/build/classes

(3) rmiregistry &

(4) cd ../..

(5) java -cp build/classes
registrationsystem.controller.Controller

b) The client will run on laptop: DEMO

(1) java -jar RMILabClient.jar micah.cs.gordon.edu

(2)Repeat the above to run a second copy - hence a second
window.

(3)Observe how changes made in one window are visible in the
other - two copies of the client both accessing the same server

(4)Ask a student to run from USB stick

4. One thing that is missing from the our discussion thus far is (and is
not present in the version of the code we are using) is synchronization.

a) Each time the rmi registry is contacted by a client, it creates a
separate thread.

b) Thus, if our GUI is running on two or more different systems
accessing the same server, two different threads could perform
conflicting operations at the same time.

c) This could be handled by explicit synchronization in the server
code. How should this be done, and where should it go?

ASK

18

Each of the methods that alters the database (doEnroll(),
doDrop(), doGrade()) needs to be synchronized. Since they
all share the same controller object, this would ensure that two
threads don’t perform an operation that alters the database at the
same time.

19

